

 Navigation

 	
 index

 	
 next |

 	django-classymail 1.0-alpha documentation

Django-ClassyMail

It’s easy to send a simple e-mail using Django. But e-mails sometimes gets
really complicated and un-DRY. That’s why I created ClassyMail.

Features

	Timezone and language support

	CSS inlining support - allows you to write normal stylesheets instead of
style="" attributes for every tag

	Code reuse with mixins (just like class based views)

Installation

ClassyMail is available on PyPI, so just install using pip:

pip install django-classymail

Contents:

	Quickstart
	Basics

	Html and text content

	Sending e-mails

	Timezone and language

	Reusing code

 Copyright 2013, Rafal Stozek.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	django-classymail 1.0-alpha documentation

Quickstart

Django makes it really easy to send e-mail messages:

from django.core.mail import EmailMessage

msg = EmailMessage(subject="Hello", body="Hello there!", to=['me@example.com'])
msg.send()

But this code will soon get really complicated. For example - we should send
both plain text version (for old or simple e-mail clients) and html version
of an e-mail:

from django.core.mail import EmailMultiAlternatives

subject, from_email, to = 'hello', 'from@example.com', 'to@example.com'
text_content = 'This is an important message.'
html_content = '<p>This is an important message.</p>'
msg = EmailMultiAlternatives(subject, text_content, from_email, [to])
msg.attach_alternative(html_content, "text/html")
msg.send()

This code will soon get even more complicated, because you need to also worry
about things like:

	More meaningful (dynamic) topic

	Which language and timezone should be used when rendering templates? We also
should use them when generating e-mail’s subject.

	Inlining css to make writing html e-mail templates easier

	Generating full urls for e-mails (not just paths)

	Attachments

	Code reuse

Basics

ClassyMail uses concept similar to django class based views. You should be
already familiar with it.

Just like with CBVs (Class Based Views) you can set attributes on class
that will be used to build an e-mail:

from django.utils.translation import ugettext_lazy as _
from classymail import ClassyMail

class WelcomeMail(ClassyMail):
 subject = _("Welcome to our website. Thanks for joining us!")

builder = WelcomeMail()
prints 'Welcome to our website. Thanks for joining us!'
print(builder.subject)

Also - just like with CBVs you can easily override those attributes using
keyword arguments to class. The only difference is that there is no
.as_view() method:

builder = WelcomeMail(subject="We can override subject", to=['me@example.com'])
print(builder.subject) # prints 'We can override subject'
print(builder.to) # prints ['me@example.com']

Both subject and to are attributes of ClassyMail parent class.
subject defaults to empty string and to defaults to None. You can
override them using keyword arguments to your e-mail class like on the example
above.

But sometimes just setting attribute on a class is not enough. Sometimes we need
things to be more dynamic. When you subclass ClassyMail you can override
attributes like subject or methods like get_subject:

class WelcomeMail(ClassyMail):
 user = None

 def get_subject(self):
 return _("Welcome %s! Thanks for joining us!") % self.user.first_name

Html and text content

Now that we know how to set a proper topic for our e-mail message let’s set
html and text template names to create our first real, working e-mail:

class WelcomeMail(ClassyMail):
 user = None
 html_template_name = 'emails/welcome.html'
 text_template_name = 'emails/welcome.txt'

 def get_subject(self):
 return _("Welcome %s! Thanks for joining us!") % self.user.first_name

 # there's also get_context_data() similar to one in CBVs
 def get_context_data(self):
 data = super(WelcomeMail, self).get_context_data()
 data['user'] = self.user
 return data

Now we have to prepare templates. If you have ever sent an html e-mail using
django you know that you can put your styles only in style="" attributes
because <style> tags are ignored.

That’s not true for ClassyMail. Behind the scenes ClassyMail will find all
styles in <style> tags and put them inside style="" attribute for you.
For example an e-mail template like this:

<html>
<head>
 <style>
 h1 { background: #eee; color: #333; }
 div.footer .who { font-style: italic; }
 div.footer .awesome { font-weight: bold; }
 </style>
</head>
<body>
 <h1>Welcome {{ user.first_name }}!</h1>
 <p>We are very happy that you decided to join us.</p>

 <div class="footer">
 Best,

 Our awesome team.

 </div>
</body>
</html>

will result in e-mail with contents like this:

<html>
<head></head>
<body style="padding:10px">
 <h1 style="color:#333; background:#eee">Welcome Matt!</h1>
 <p>We are very happy that you decided to join us.</p>

 <div>
 Best,

 Our awesome team.

 </div>
</body>
</html>

that’s helpful, isn’t it?

Sending e-mails

Now that we have a real welcome e-mail class we should send it:

builder = WelcomeMail(to=[user.email])
build() builds instance of django.core.mail.EmailMessage
msg = builder.build()
msg.send()

As every keyword argument - to is just another attribute on ClassyMail
class that is being overridden. build() method returns new
django.core.mail.EmailMessage instance, which we can send.

Boy, 3 lines of code. That’s a lot of boilerplate. Actually there is a shortcut,
but example above shows how actually ClassyMail works - ClassyMail subclasses
are just builders which build instances of EmailMessage classes.

Now that you know how this actually works you can use convenient shortcut:

WelcomeMail.send(to=[user.email])

But remember - if you’re sending more than just one e-mail message then you may
want to build your messages and then send them using single connection.
See how to send multiple e-mails [https://docs.djangoproject.com/en/dev/topics/email/#sending-multiple-emails].

Timezone and language

When sending an e-mails to user we should use timezone and language preferred
by user rather than one active for current request. ClassyMail helps you
with that by providing timezone and language attributes and
get_timezone() and get_language() methods which you can override.

class WelcomeMail(ClassyMail):
 user = None
 html_template_name = 'emails/welcome.html'
 text_template_name = 'emails/welcome.txt'
 timezone = pytz.timezone("Europe/Warsaw")

 def get_subject(self):
 return _("Welcome %s! Thanks for joining us!") % self.user.first_name

 def get_language(self):
 return self.user.get_profile().language

In the example above we infer language from user’s profile. Both language and
timezone will be used not just to render templates but also e-mail’s subject
(actually all get_* methods are called with changed language and timezone).

Reusing code

Don’t repeat yourself. ClassyMail achieves this - like CBVs - using mixins. Let’s
see an example of a simple mixin:

class UserMixin(ClassyMail):
 """
 Sets language and timezone according to user preferences, adds "user" to
 template context and sets recipient to user's email address.
 """
 user = None

 def get_timezone(self):
 return self.user.get_profile().timezone

 def get_language(self):
 return self.user.get_profile().language

 def get_to(self):
 return [self.user.email]

 def get_context_data(self):
 data = super(UserMixin, self).get_context_data()
 data['user'] = self.user
 return data

This little piece of code will infer timezone and language from “user”
attribute, add “user” to template context and set recipient to user’s email.
It is also easy to test and will make our welcome email class a lot simpler.

class WelcomeEmail(UserMixin, ClassyMail):
 html_template_name = 'emails/welcome.html'
 text_template_name = 'emails/welcome.txt'

 def get_subject(self):
 return _("Welcome %s! Thanks for joining us!") % self.user.first_name

Not only our e-mail logic is now simpler because we can just include UserMixin
but also we can write tests for user timezone, language etc. once.

Note

When subclassing you should always place mixins before base classes. This
will help you avoid problems with MRO (method resolution order).

 Copyright 2013, Rafal Stozek.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	django-classymail 1.0-alpha documentation

Index

 Copyright 2013, Rafal Stozek.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		django-classymail 1.0-alpha documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Rafal Stozek.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

