
django-classymail Documentation
Release 1.0-alpha

Rafal Stozek

March 18, 2013

CONTENTS

1 Features 3

2 Installation 5
2.1 Quickstart . 5

i

ii

django-classymail Documentation, Release 1.0-alpha

It’s easy to send a simple e-mail using Django. But e-mails sometimes gets really complicated and un-DRY. That’s
why I created ClassyMail.

CONTENTS 1

django-classymail Documentation, Release 1.0-alpha

2 CONTENTS

CHAPTER

ONE

FEATURES

• Timezone and language support

• CSS inlining support - allows you to write normal stylesheets instead of style="" attributes for every tag

• Code reuse with mixins (just like class based views)

3

django-classymail Documentation, Release 1.0-alpha

4 Chapter 1. Features

CHAPTER

TWO

INSTALLATION

ClassyMail is available on PyPI, so just install using pip:

pip install django-classymail

Contents:

2.1 Quickstart

Django makes it really easy to send e-mail messages:

from django.core.mail import EmailMessage

msg = EmailMessage(subject="Hello", body="Hello there!", to=[’me@example.com’])
msg.send()

But this code will soon get really complicated. For example - we should send both plain text version (for old or simple
e-mail clients) and html version of an e-mail:

from django.core.mail import EmailMultiAlternatives

subject, from_email, to = ’hello’, ’from@example.com’, ’to@example.com’
text_content = ’This is an important message.’
html_content = ’<p>This is an important message.</p>’
msg = EmailMultiAlternatives(subject, text_content, from_email, [to])
msg.attach_alternative(html_content, "text/html")
msg.send()

This code will soon get even more complicated, because you need to also worry about things like:

• More meaningful (dynamic) topic

• Which language and timezone should be used when rendering templates? We also should use them when
generating e-mail’s subject.

• Inlining css to make writing html e-mail templates easier

• Generating full urls for e-mails (not just paths)

• Attachments

• Code reuse

5

django-classymail Documentation, Release 1.0-alpha

2.1.1 Basics

ClassyMail uses concept similar to django class based views. You should be already familiar with it.

Just like with CBVs (Class Based Views) you can set attributes on class that will be used to build an e-mail:

from django.utils.translation import ugettext_lazy as _
from classymail import ClassyMail

class WelcomeMail(ClassyMail):
subject = _("Welcome to our website. Thanks for joining us!")

builder = WelcomeMail()
prints ’Welcome to our website. Thanks for joining us!’
print(builder.subject)

Also - just like with CBVs you can easily override those attributes using keyword arguments to class. The only
difference is that there is no .as_view() method:

builder = WelcomeMail(subject="We can override subject", to=[’me@example.com’])
print(builder.subject) # prints ’We can override subject’
print(builder.to) # prints [’me@example.com’]

Both subject and to are attributes of ClassyMail parent class. subject defaults to empty string and to
defaults to None. You can override them using keyword arguments to your e-mail class like on the example above.

But sometimes just setting attribute on a class is not enough. Sometimes we need things to be more dynamic. When
you subclass ClassyMail you can override attributes like subject or methods like get_subject:

class WelcomeMail(ClassyMail):
user = None

def get_subject(self):
return _("Welcome %s! Thanks for joining us!") % self.user.first_name

2.1.2 Html and text content

Now that we know how to set a proper topic for our e-mail message let’s set html and text template names to create
our first real, working e-mail:

class WelcomeMail(ClassyMail):
user = None
html_template_name = ’emails/welcome.html’
text_template_name = ’emails/welcome.txt’

def get_subject(self):
return _("Welcome %s! Thanks for joining us!") % self.user.first_name

there’s also get_context_data() similar to one in CBVs
def get_context_data(self):

data = super(WelcomeMail, self).get_context_data()
data[’user’] = self.user
return data

Now we have to prepare templates. If you have ever sent an html e-mail using django you know that you can put your
styles only in style="" attributes because <style> tags are ignored.

That’s not true for ClassyMail. Behind the scenes ClassyMail will find all styles in <style> tags and put them inside
style="" attribute for you. For example an e-mail template like this:

6 Chapter 2. Installation

django-classymail Documentation, Release 1.0-alpha

<html>
<head>

<style>
h1 { background: #eee; color: #333; }
div.footer .who { font-style: italic; }
div.footer .awesome { font-weight: bold; }
</style>

</head>
<body>

<h1>Welcome {{ user.first_name }}!</h1>
<p>We are very happy that you decided to join us.</p>

<div class="footer">
Best,

Our awesome team.

</div>
</body>
</html>

will result in e-mail with contents like this:

<html>
<head></head>
<body style="padding:10px">

<h1 style="color:#333; background:#eee">Welcome Matt!</h1>
<p>We are very happy that you decided to join us.</p>

<div>
Best,

Our awesome team.

</div>
</body>
</html>

that’s helpful, isn’t it?

2.1.3 Sending e-mails

Now that we have a real welcome e-mail class we should send it:

builder = WelcomeMail(to=[user.email])
build() builds instance of django.core.mail.EmailMessage
msg = builder.build()
msg.send()

As every keyword argument - to is just another attribute on ClassyMail class that is being overridden. build()
method returns new django.core.mail.EmailMessage instance, which we can send.

Boy, 3 lines of code. That’s a lot of boilerplate. Actually there is a shortcut, but example above shows how actually
ClassyMail works - ClassyMail subclasses are just builders which build instances of EmailMessage classes.

Now that you know how this actually works you can use convenient shortcut:

WelcomeMail.send(to=[user.email])

2.1. Quickstart 7

django-classymail Documentation, Release 1.0-alpha

But remember - if you’re sending more than just one e-mail message then you may want to build your messages and
then send them using single connection. See how to send multiple e-mails.

2.1.4 Timezone and language

When sending an e-mails to user we should use timezone and language preferred by user rather than one ac-
tive for current request. ClassyMail helps you with that by providing timezone and language attributes and
get_timezone() and get_language() methods which you can override.

class WelcomeMail(ClassyMail):
user = None
html_template_name = ’emails/welcome.html’
text_template_name = ’emails/welcome.txt’
timezone = pytz.timezone("Europe/Warsaw")

def get_subject(self):
return _("Welcome %s! Thanks for joining us!") % self.user.first_name

def get_language(self):
return self.user.get_profile().language

In the example above we infer language from user’s profile. Both language and timezone will be used not just to render
templates but also e-mail’s subject (actually all get_* methods are called with changed language and timezone).

2.1.5 Reusing code

Don’t repeat yourself. ClassyMail achieves this - like CBVs - using mixins. Let’s see an example of a simple mixin:

class UserMixin(ClassyMail):
"""
Sets language and timezone according to user preferences, adds "user" to
template context and sets recipient to user’s email address.
"""
user = None

def get_timezone(self):
return self.user.get_profile().timezone

def get_language(self):
return self.user.get_profile().language

def get_to(self):
return [self.user.email]

def get_context_data(self):
data = super(UserMixin, self).get_context_data()
data[’user’] = self.user
return data

This little piece of code will infer timezone and language from “user” attribute, add “user” to template context and set
recipient to user’s email. It is also easy to test and will make our welcome email class a lot simpler.

class WelcomeEmail(UserMixin, ClassyMail):
html_template_name = ’emails/welcome.html’
text_template_name = ’emails/welcome.txt’

8 Chapter 2. Installation

https://docs.djangoproject.com/en/dev/topics/email/#sending-multiple-emails

django-classymail Documentation, Release 1.0-alpha

def get_subject(self):
return _("Welcome %s! Thanks for joining us!") % self.user.first_name

Not only our e-mail logic is now simpler because we can just include UserMixin but also we can write tests for user
timezone, language etc. once.

Note: When subclassing you should always place mixins before base classes. This will help you avoid problems with
MRO (method resolution order).

2.1. Quickstart 9

	Features
	Installation
	Quickstart

